TMM CPS functions

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

Faculty of Engineering, Built Environment and Information Technology

Fakulteit Ingenieurswese, Bou-omgewing en Inligtingtegnologie / Lefapha la Boetšenere, Tikologo ya Kago le Theknolotši ya Tshedimošo

Herman A. Hamersma, Pr Eng

2022-10-27

Make today matter

Background

- CPS is a system
 - Currently not available as an 'off-the-shelf', 'all-in-one', 'one-size-fits-all' product
 - Two/three providers integrating
 - CxD
 - TMM OEM
 - Interface supplier (if needed)
 - Safety system requires clearly defined functionality (responsibilities)
 - Liability and accountability if something goes wrong
- We have made significant progress with CxD providers
- Unfortunately not the case with TMM OEMs

Background

CPS functional breakdown

Machine > CxD interface

- Communication medium between machine and CxD
 - Typically CAN interface
 - Complies with ISO 21815-2:2021
- Functionality
 - Negotiation between CxD and TMM at start-up or if something changes
 - Instructions (commands) from CxD sent to TMM
 - Response from TMM on all messages sent from CxD (heartbeat)
 - Machine data (obtained from Machine Sensing sub-system)

Machine controller

- Controls all aspects of TMM, but focus is on implementing CxD commands
- ISO 21815-2:2021 defines eight commands (functionalities):
 - Normal operation keep going, produce!
 - Emergency stop collision cannot be avoided, try to mitigate the consequences
 - Controlled stop stop machine in a conventional manner
 - Slow down reduce speed to avoid collision (e.g. dovetail scenario)
 - Stand down limited functionality, desired state is stationary (e.g. failure present)
 - Bypass CxD functions overridden by authorized person
 - Apply setpoints maximum speed (if speed is exceeded, TMM to reduce speed)
 - Motion inhibit prevent engagement of propulsion system, remain stationary

Machine controller

- While a CxD may decide to make use of all these commands, the TMM OEM needs to define which commands are permissible.
 - Clearly communicate this strategy with CxD, CxD must adapt to TMM
- Factors that affect the permissible commands:
 - Brake system type
 - Current machine speed/gear selection
 - Machine status (e.g. boom extended, tray up, bucket raised)
- What are operators allowed to do? What are they trained to do?
 - TMM OEM needs to define expected 'operator' behaviour
- Provides fail—to-safe functionality
 - E.g. if communication with CxD is lost, machine must fail to safe condition

Machine sensing

- Information readily available on machine provided to CxD as defined in ISO 21815-2:2021
 - Machine speed
 - Direction of travel
 - Gear selection
 - Payload status
 - Pitch angle, etc.
 - Other information not provided to CxD, but used by Machine Controller to make decisions
 - Articulation angle/steering input
 - Engine management systems
 - Brake wear
 - Fuel & other fluid levels & pressures

.

Machine braking system

- The physical braking system, consisting of (as applicable)
 - Friction brakes
 - Retarder
 - Engine braking
 - Hydrostatic drive
 - Electric regenerative brakes
 - Park brake
 - All peripherals, such as valves, harnesses, control electronics, actuators, etc.

Machine log keeping system

- Keeps an auditable record of CPS events
 - Replies and data messages sent via CAN bus
 - Messages received via CAN bus
- Verifies that TMM received instructions from CxD
- Used for:
 - Incident investigation
 - Performance improvement

Current industry status

- Limited TMM OEM functionality made accessible to CxD suppliers
 - Mines still need to be compliant, so they have to fill the gap
 - Results in aftermarket modifications to braking systems
 - Introduces business risks (e.g. warranty void), safety risk (e.g. FMECA incomplete)
- CxD suppliers are more agile than large, multi-national OEMs, hence they try to accommodate uncooperative TMM OEMs
 - Significant variation within brand, model, serial number ranges
 - Onerous development ask of CxD suppliers, introduces safety and compliance risk
 - ±15 CxD suppliers in the market, vs. 100+ TMM OEMs
- TMM OEMs need to make more progress, quickly

Recommendation

- MOSH requirements clearly define functionality and responsible parties
 - We need buy-in from major OEMs
 - Expectation is:
 - TMM OEM to clearly develop machine control strategies for commands as defined in ISO 21815-2:2021
 - Where some commands are infeasible/impractical, that these be clearly stated
 - TMM OEM to provide brake performance information that is valid under clearly defined conditions (e.g. ISO 3450:2016 test conditions)
 - TMM OEMs to support the South African Mining Industry as the global leaders of TMM safety technology adoption

Thank You

TMM CPS functions

Herman A. Hamersma